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1. We consider the motion of an orbiting satellite in a Central 
gravitational force field during the process of changing circular orbits 
under the influence of an acceleration W, whose vector at any instant 
is directed along the binormal to the perturbed trajectory. It is known 
that such a perturbed motion corresponds to a rotation of the osculating 
orbit [d relative to the center of gravity in which the shape of the 
orbit remains unchanged. We are interested in a maneuver resulting in 
the transfer of the satellite into a given plane of motion. The aim of 
such a maneuver will be achieved if at the end of the active portion of 
the flight the plane of the osculating orbit coincides with the given 
plane. 

We will carry out the analysis of the motion of the osculating orbit 

under the action of the acceleration W. 

We fix to the plane P of the unperturbed orbit a right-handed rec- 

tangular system of coordinates OXYZ (Fig. 1) with origin at the center 
of gravity, such that the x-axis is directed towards the point C of the 
orbit, where the satellite is at the instant te when the maneuver 
starts, while the y-axis is along a perpendicular to the x-axis in the 
plane of the orbit and is in the direction of the motion of the 
satellite. 

As a result of the maneuver the triad of axes Oxyz occupies the 

position OX ‘y ‘z’. The new position of the triad relative to the initial 
position may be described by the Euler angles y, 8, 9 (Fig. 1). The 
rate of change of the Euler angles under the action of the acceleration 
W is in the general case determined by the differential equations of 
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the osculating element [d; in the particular case 

in which the orbit parameter p = r, where r is the 

radius vector of 

of a circular orbit, 
magnitude of the 
the satellite, we have 

d’p__w -F 
z - lf L 

sin u c0t 6 (1.1) 

t cos u 

Here p is the gravitational con- 
stant and u is the argument of the 
latitude. 

We denote by o the angular velocity 
vector of the triad Oz’Y’z’ relative 
to the axes Oxyz. We consider the pro- 
jection of o on the axes of a rectangu- 

Fig. 1. lar system of coordinates with origin 
at the center of mass of the satellite 

C’. consisting of the radius vector 
of the satellite, its velocity vector, and the binormal to the tra- 
jectory. Projecting the angular velocity vector with components 4. 6 
and 4 defined by equations (1.1) onto these axes, we obtain 

where or, oV and 
velocity vector, 

q.=wI/‘/cL, ov=o, o,=o (1.2) 

% are the components of o along the radius vector, 
and binormal. 

The relations 

z’y’z , ’ fixed to 

(1.2) indicate that in the perturbed motion the triad 

the osculating orbit, rotates with angular velocity 
o = W’l(r/p) about the instantaneous axis which coincides with the radius 

vector of the satellite. 

We define the position of the radius vector r, which is always in 

the z’y’ 
class of 

plane, by the angle @_,_measured from the x*-axis. For the 
maneuvers considered La_/ 

d6 = P dt, or 4 = B (t - to) 

where R is the angular velocity of the satellite 
of radius r. From Fig. 1 we have 

u=‘p+e 

2. We use the methods of the theory of finite 

Q=I VI E (1.3) r r 

in the circular orbit 

(1.4) 

rotations for the 
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determination of the law of variation of the variables y, 8 and u. Let 

OX’ w t oz be the projections of the angular velocity vector on the x’, 
, Y 

axes, 

:y,t:ln r31 
which are fixed to the osculating orbit. Then we have the 

= -y P + $(m, + i0,). (i = 1/Z) (2.1) 

where a, p are the Cayley-Klein parameters, which are expressible in 

terms of the Rodrigues-Hamilton parameters A,, A,, A,. A, and the Euler 

angles [31 

o = ho+&= cos ices*+ icos$sinv 

For the projections oz, o o we have 
Y’ = 

o,V==w cos6 = wl/+os 6, or=0 sine= WJh&sinft, co,=0 (2.3) 

In the system (2.1) it is convenient to transform to the 

variable * in accordance with the relation (1.3). Carrying 

change of variables, we obtain with the aid of (2.3) 

independent 

out the 

(2.4) 

where n is the lateral transfer thrust at the altitude of the satellite, 

which we will assume to be constant during the maneuver. We determine 

the initial conditions of the system (2.4) by assuming that the initial 

values of the Euler angles at t = t0 are zero, thus 

a = 1, g=O for 4=0 (2.5) 

The system (2.4) reduces to a single linear equation of the second 

order in a. Its solution for the initial conditions (2.5) takes the form 

1 
a=- 1’ ( 1 

2 -I- JLnL i 
-I=) exp [ + (- 1+ 1/ n2) I?]+ 

t-+(1- 
I/RP’+ 1 exp 1 [ 

-$I+ v+i)tq (2.6) 

Differentiating (2.6) with respect to 6 and substituting the result 

into the first equation of the system (2.4). we find the following solu- 
tion for p 
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P =2v-f&{exp [$(I + I/nBf 6]- exp[-$(i- vi_) 8]} (2.7) 

Separating the real and imaginary parts of (2.6) and (2.7). we have 
in accordance with (2.2) 

a0 =( sins z 
c4@2 + -1 1 ‘1~ 2Po- 8 

cos2’ Al = Vn*p+ i sin 2 cos f 

ha =( 
sins z 

cos~z +y 
) 
% 2Pa - 6 

(2.6) 

n+l 
sin 2, & = vn2n+ 1 sin z sin $ 

z = + I/r&a + 1 6 = 4 )fn’ + I (t - to), po= trm-‘~~ 

From (2.2) we have 

ho = cos $ cos*+ ) A1 = sin i co.5’3 

hs = cosB sin’* & = sin t sin’+’ 
(2.9) 

2 2 ’ 

Comparing expression (2.8) with expression (2.9). we conclude that 

It should be noted that a similar formula for 6 was obtained in [41. 
From the first two equations of the systems (2.10) and (1.4) we find 

V = pe, 9 = PO - 6, a = PO. 

Thus we have the following group of formulas (2.11) 

Formulas (2.11) determine the angular coordinates of the satellite 
in the maneuver for both positive and negative transfer thrusts. How- 
ever, it is necessary to keep in mind the fact that for n < 0 the angles 
y, 6 and u are measured relative to the line of the descending node. An 
analysis of the formulas shows that in the perturbed motion the inclina- 
tion of the osculating orbit to the initial plane does not exceed a 
value equal to 

(3.12) 

From (2.12). in particular, it follows that the rotation of the plane 

of the orbit by the angle 6 = TT is possible only for an infinitely large 
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value of the transfer thrust (au impulsively applied thrust). 

The dependence of the angle 8, on the transfer thrust is shown in 
Fig. 2. 

The maximum inclination 0, 
I I t 

I 

is obtained for T = 112 8, The 
values of all the parameters 

0 I I f 
3 6 s 

f InI j 
IZ 15 

In t4,51 it is shown that 
for the maneuver considered 

Fig. 2. here the perturbed trajectory 

of the satellite is in the 
plane of a smsll circle, inclined to the plane of the unperturbed orbit 
by the angle 8,/2 = tan-’ n. For T = l/2 w the osculating orbit touches 

the perturbed trajectory at its highest point with respect to the plane 
of the initial orbit. 

3. In order to obtain angles of rotation greater than 8, = 2 tan-’ n 

it is necessary, as follows from the second equation of the system 
(1.1). to keep the sign of W cos u constant by reversing the direction 
of the acceleration I at the instant when co8 u passes through zero. 
The advisability of periodically reversing the direction of the thrust 
was pointed out in a number of papers; we mention here references [4,61. 
We will use the method stated above for investigating the maneuver with 
a changing sign of the transfer thrust n. We consider the segment of 
the perturbed trajectory on which the satellite travels with a constant 
sign of the transfer thrust after the kth change in the sign of n. The 
sign of the transfer thrust on this segment is defined by the relation 

sign n sign@ = (- l)k ( Is = 1, . . .) m; m = ent 2 mYI: In! i 

Clearly, the system (2.4) is valid for this segment. The initial con- 
ditions are the values of the parameters at the instant of the kth 
change in the sign of n. The values of all parameters corresponding to 
this instant will be denoted by the index k. On the basis of the results 
in Section 2, we find 
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4+$, 8, = 2k tan-’ A (0), 4p1; = + + (k - 1) IT + 6, (3.4 

where n(O) is the transfer thrust at the start of the maneuver. 

Substituting (3.2) into the expression (2.2). foci? = 6*we find 

‘k f&J- $$], P= 
0, 

a =cosTexp - sin - 2 exp - ; (kn - 8J] (3.3) 

Solving the system (2.4) for the initial conditions (3.3). we obtain 
(3A) 

where 

p= -4 ‘n;?!!!!;* ,(, - k$)] 

g= *uI-’ 
Yrn2+l 

j8tt we(k)+ 1 

oat (r_k ;)] (e(@=!y) (3.5) 

Comparing expressions (3.4) and (2.9), we conclude that 

$+cp=kn-----2p, 11,--~==22e-“kn+f (3.6) 

From the system (3.6) we find 

4) =e-f-J, cp = kn - (E -+ p) - f+ or u = kx - (I? +- p) 

Substituting the expressions (3.5). we obtain finally 

(3.6) 
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u = kn $ tea-’ 
{ 

-y’n* + 1 

I 

i - d ‘,“y; e 2e’*’ 
( 

n\ 
2 (1 n I cot 2f+*‘+ 1) 

tilaz-k- - 
2) 

- avt (T - It%)]} (3.9) 

Formulas (3.7). (3.8) and (3.9) determine the angular coordinates of 
the satellite during an arbitrary interval of time, in the course of 
which the transfer thrust is constant and at the start of which the 
values of the variables satisfy the relations (3. l), (3.2); when the 
msneuver begins with a negative transfer thrust (n(O) < 0) the angles 
y, 8 and u determined ,by the formulas are measured relative to the line 
of the descending node. 

As an illustration, the dependence of the angles y, 8 and u in the 

maneuver on T are shown in Fig. 3 for a transfer thrust I al = 0.5. The 
initial portion of the maneuver is calculated from formula (2.11) and 
the latter according to formulas (3.7). (3.8) and (3.9). 

Turniug to formula (3.7). we reduce it to the form 

From (3. IO) it follows that the growth of the angle 8 with increasing 
7 proceeds until the trinomial of the second degree in the square 
brackets remains positive-definite. The positive root of this trinomial, 
which determines the critical value 8,. of the angle 0,. is equal to 

I*,*’ --l+vnq , or j~*j=~- tm-t ini (311) cot - = 2 lnl k . 

For values 19, f > 1 ek* 1 auy further increase in the inclination of 
the osculating orbit is impossible. As follows from (3. Xl), the critical 
case corresponds to motion of the satellite in the plane of a small 
circle parallel to the initial plane. 

For the maneuver illustrated by Fig. 3. the value of 8 at the instant 
of the third change in sign of the transfer thrust exceeds the critical 
value, hence for T > 270’ a decrease in .the inclination of the osculat- 
ing orbit is observed. 

The dependence of the critical angle 8,* on the transfer thrust is 
shown in Fig. 2. 

4. The analgsis carried out here enables the synthesis of a maneuver 
for transferring the satellite from the original plane into a given 



880 Iu.P. Gus ‘kov 

plane. For selected values of the lateral transfer thrust, the control 
of the maneuver reduces to ensuring the required duration of the action 
of the transfer thrust and the required position of the satellite on 
the orbit at the instant the maneuver begins. 

The duration of the maneuver is de- 
termined with the help of the formula 
for 8. proceeding from the value of 
the parameter T for which the given 
angle between the planes is attained. 
In the case of a maneuver in which 

the direction of the thrust reverses, 
the required value of r is determined 
in two steps. First the number k of 
sign changes in the transfer thrust 
is found as the integral part of the 
ratio 

0 r 0 
60 180 270 \360° 2 &L-i- n (0) 

-8Oi 
where 8 is the given angle between the 
planes. Then after ek is found, the re- 
quired value of -r is determined with 

Fig. 3. 

For the known value of T at the end of the maneuver the shift of the 
line of nodes of the osculating orbit to the end of the active portion 
relative to the x-axis of the initial plane is determined. The x-axis 
coincides with the position of the radius vector of the satellite at 
the instant when the maneuver begins. hence the value obtained for the 

angle y defines the required position of the satellite at the instant 
to relative to the given line of intersection of the initial and final 
orbital planes. 

In conclusion we remark that in order to ensure the perpendicularity 

of the acceleration W to the plane of the osculating orbit, the thrust 
must rotate with angular velocity o = WJ(r/v) about the radius vector 
of the satellite. 
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